机器学习
数据库
|
|
|
|
-
可与Materials Project对接,但结构转换不如
ase
准确。
|
|
结构搜索
描述符
|
|
|
|
神经网络
|
|
安装GPU驱动
-
鼠标右键
NVIDIA控制面板
–帮助
–系统信息
–驱动程序版本: 217.00 (RTX 3080 Ti)
,查看Table 3 CUDA Toolkit and Corresponding Driver Versions,CUDA 11.7 Update 1 >=515.48.07 >=516.31
。或使用nvidia-smi
查看。 -
从cuDNN Archive,下载
cuDNN v8.9.7 (2023 年 12 月 5 日), 适用于 CUDA 11.x
。修改环境变量:右键
此电脑
–属性
–高级系统设置
–环境变量
–Path
–编辑
–新建
,
|
|
- 测试
|
|
查看是否有Result = PASS
输出。
GPU监控
- nvidia-smi
|
|
- gpustat
|
|
安装TensorFlow、PyTorch、Keras
- PyTorch
|
|
- TensorFlow
|
|
测试TensorFlow、PyTorch、Keras
|
|
|
|
|
|
图神经网络
-
MEGNet
Chen C, Ye W, Zuo Y, et al. Graph networks as a universal machine learning framework for molecules and crystals[J]. Chemistry of Materials, 2019, 31(9): 3564-3572. 被引843
-
CGCNN | Tutorial
Park C W, Wolverton C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery[J]. Physical Review Materials, 2020, 4(6): 063801. 被引228
-
ALIGNN
Choudhary K, DeCost B. Atomistic line graph neural network for improved materials property predictions[J]. npj Computational Materials, 2021, 7(1): 185. 被引165
-
M3GNet
Chen C, Ong S P. A universal graph deep learning interatomic potential for the periodic table[J]. Nature Computational Science, 2022, 2(11): 718-728. 被引136
|
|
-
DeeperGATGNN
Louis S Y, Zhao Y, Nasiri A, et al. Graph convolutional neural networks with global attention for improved materials property prediction[J]. Physical Chemistry Chemical Physics, 2020, 22(32): 18141-18148. 被引130
-
OGCNN
Karamad M, Magar R, Shi Y, et al. Orbital graph convolutional neural network for material property prediction[J]. Physical Review Materials, 2020, 4(9): 093801. 被引94
-
CHGNet
Deng B, Zhong P, Jun K J, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling[J]. Nature Machine Intelligence, 2023, 5(9): 1031-1041. 被引29
-
KGCNN
Reiser P, Eberhard A, Friederich P. Graph neural networks in TensorFlow-Keras with RaggedTensor representation (kgcnn)[J]. Software Impacts, 2021, 9: 100095. 被引14
-
SkipAtom
Antunes L M, Grau-Crespo R, Butler K T. Distributed representations of atoms and materials for machine learning[J]. npj Computational Materials, 2022, 8(1): 44. 被引11
-
CEGANN
Banik S, Dhabal D, Chan H, et al. CEGANN: Crystal Edge Graph Attention Neural Network for multiscale classification of materials environment[J]. npj Computational Materials, 2023, 9(1): 23. 被引10
-
ChargE3Net
Koker T, Quigley K, Taw E, et al. Higher-order equivariant neural networks for charge density prediction in materials[J]. npj Computational Materials, 2024, 10(1): 161. 被引1
|
|
|
|
|
|
-
A library for graph neural networks in jax.
-
Inspired by rusty1s/pytorch_geometric, we build a GNN library for TensorFlow.
-
StellarGraph is built on TensorFlow 2 and its Keras high-level API, as well as Pandas and NumPy.
PyG与DGL对比
原子间势
-
NequIP
Batzner S, Musaelian A, Sun L, et al. E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials[J]. Nature communications, 2022, 13(1): 2453. 被引637
BOTnet
Batatia I, Batzner S, Kovács D P, et al. The design space of E (3)-equivariant atom-centred interatomic potentials[J]. Nature Machine Intelligence, 2025: 1-12. 被引117
-
ChemicalMotifIdentifier
Sheriff, K., Cao, Y. & Freitas, R. Chemical-motif characterization of short-range order with E(3)-equivariant graph neural networks. npj Comput Mater 10, 215 (2024).
-
SchNetPack
Schütt K T, Kessel P, Gastegger M, et al. SchNetPack: A deep learning toolbox for atomistic systems[J]. Journal of chemical theory and computation, 2018, 15(1): 448-455. 被引354
-
Allegro
Musaelian A, Batzner S, Johansson A, et al. Learning local equivariant representations for large-scale atomistic dynamics[J]. Nature Communications, 2023, 14(1): 579. 被引296